In this Application Note electrochemical behavior of solar cell was studied under different light source through OCP and Impedance methods. It could be seen that the results of Nyquist and OCP curves are directly depended to the wavelength of light source.
Introduction

Recent years photoelectrochemical cells have attracted much more attention thanks to their feasibility as low-cost solar energy conversion devices and hence a number and variety of applications have demanded. The principle on which the most efficient photovoltaic cells are based is the neutralization (“passivation”) of different states that result from different chemical bonds at surfaces and at grain boundaries. This application note covers the electrochemical behavior of photovoltaic cell operation through changing the wavelength of light source using OCP and EIS methods, but also recent advances in research and development for industrial applications could be done by changing the power and intensity of light source as well.

Starting with photoelectrochemical processes, relevant theoretical background is needed, sometimes including redox potentials, interface of the semiconductor-liquid junction (if the test is performing in the liquid electrolyte) current range of sample and Butler-Volmer relation, etc. So it is highly recommended users to pay attention while selecting the parameters of their tests.

About the Light Source

LED revolver used in this application note is a light source that contains 9 high power LEDs placed on a revolving disc. Only one of the LEDs can be turned on at the time. LED selection, light intensity, duration and other parameters are driven from a dedicated PC Software (figure 1).

Figure 1: LED revolver
The device could be supplied with a cage (Thorlabs or TECHSPEC from Edmund Optics compatible) type of sample holder with a manually adjustable lens that is used to focus light on a sample or on a waveguide.

Parameters

This experiment was performed by OrigaMaster software. The parameters of the OCP method is shown in figure 2.

![Figure 2: Parameters of OCP method](image)

With the above default settings, the OCP of solar cell is measured during 45 minutes in different wavelengths: 371, 390, 400, 422, 522, 590, 628, 735 nm, light with and without light. The measured current is changed by changing the wavelength.

TIPS: in OCP method no current or potential is imposed, so any change in current comes from the reaction of solar cell with light.
The parameters of EIS method could be found in figure 3. The DC potential is set as OCP value (Free). The frequency range is between 1 KHz to 100 mHz. The AC current range is defined as 50 µA correspond to the current that achieved by running Linear Voltammetry method on the sample.

The parameters of Linear Voltammetry method is found in figure 4.
Application Note

Figure 5: Linear Voltamogram of solar cell, this curve declare the maximum current range

TIPS: in this application note the Linear voltammetry is used just to know the current range. As it can be seen in figure 5, the maximum current is about 30 µA so the AC current range in the Impedance method is defined as 50 µA because the potentiostat that is used for this test is OGF500.

Results

Figure 6 shows the OCP curve of solar cell in front of light in different wavelength.

Figure 6: OCP curve of solar cell
In figure 7, 9 Nyquist curves of impedance tests are overlayed. The resistance of solar cell is changed by changing light source.

Figure 7: Nyquist curves of solar cell in different wavelenghts

Instrument and Sample

Electrode setup

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solar Cell (Figure 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>OrigaFlex 500 +</td>
</tr>
<tr>
<td></td>
<td>Impedance Module</td>
</tr>
<tr>
<td>Software</td>
<td>OrigaMaster</td>
</tr>
</tbody>
</table>

Figure 8: OrigaStat OGF500 + EIS module

Figure 9: solar cell sample