
Application Note

General Electrochemistry AP-GE02

Pot. Advanced Cyclic Voltammetry

This Application Note describes how the Pot. Advanced CV method works by giving an example with Ferri/Ferrate solution.

Application Note

Introduction

Cyclic voltammetry (CV) is one of the most applicable electrochemical method specially for qualification analysis. In this method the potential scans through working electrode linearly versus time in cyclical phases. The rate of voltage which changes over time during each of these phases, is known as the experiment's scan rate (V/s or mV/s). For some applications, simple CV is not enough, and it is necessary to apply potential to working electrochemical cell.

In this application note a different type of performing potential scan through CV method is being discussed. This is not only a CV method but also have the ability to hold potential in each potential vertex in unlimited time duration.

Pot. Advanced Cyclic Voltammetry is an OrigaMaster 5 method accessible from the Chemistry items - Voltammetry group of the Sequence Ribbon.

Parameters

The Parameter of the Pot. Advanced CV is shown in figure 1.

With the above default settings, the initial potential of the working electrode is set to 0 mV versus REF electrode, then scanned at 20 mV/s (scan rate) up to +600 mV versus REF (Potential 1, upper vertex). It is defined to hold potential for 10 second here. Current measurement auto ranging is performed then the potential scan will be continued up to -200 mV/s, the potential will be hold again for 10 second as defined in the method.

It is possible to hold potential for both Upper vertex (Potential 1) and lower vertex (Potential 2). Figure 2 shows that the potential is old for 10 seconds in the +600 and -200 mV.

Thanks to flexibility of Origamaster5 software, all these parameters can be edited according to user's need. For example, the potentials can be set versus OCP, the duration of hold potential can be more or less.

Properties			×
Display all 📋 Details 👭 Graph			
Pot. Advanced Cyclic Voltammetry			
	Potential 0 (mV)	0, REF	
	Potential 1 (mV)	600, REF	
	Hold potential 1	10, sec., 0.1	
	Potential 2 (mV)	-200, REF	
	Hold potential 2	10, sec., 0.1	
	Scan rate (mV/sec.)	20, 0.0225, 0.45	
Cycle number		3	
Maximum current (mA)		500	
Minimum current (mA)		-500	
Ohmic Drop Comp.		No	
M	aximum range	Auto	
M	inimum range	Auto	
Ar	nalog Filter	Auto	
Digital Filter		0	
Open circuit at end		Yes	
Save points		Yes	
Auxiliary input		No	

Figure 1: Parameters

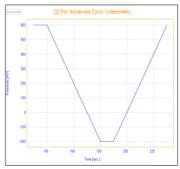


Figure 2: Curve Time vs Potential

Results

Figure 3 shows the voltammogram of this test for Fe solution. Az it can be seen in the graph, in the upper vertex and lower vertex, the potential is hold for 10 second (time axes).

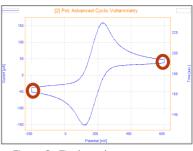


Figure 3: Final result

Flectrode setun

Instrument and Electrodes

Figure 4: OrigaFlex OGF500

Figure 5: Electrochemical cell

Lietti ode setup		
Reference Electrode (REF)	Calomel Type: OGR003	
Counter Electrode (AUX)	Platinum wire Ø1mm Type: OGV005	
Working Electrode (WRK)	Platinum Ø5mm Type: EMEDTPTD5	
Electrolyte	Ferri/Ferrate solution 5 x 10 ⁻³ M in KCl	
Instrument	OrigaFlex OGF500	
Software	OrigaMaster	

OrigaLys ElectroChem SAS

Les Verchères 2 62A, avenue de l'Europe 69140 RILLIEUX-la-PAPE FRANCE 2 +33 (0)9 54 17 56 03 4 +33 (0)9 59 17 56 03 <u>contact@origalys.com</u>

