

General Electrochemistry AP-GE17

Invertigation of Hydrogen Permeation Through Steel

The purpose of this application note concerns the development of a test to study the diffusion of hydrogen through metallic materials. This phenomenon is known as hydrogen permeation (HPF). Hydrogen is an element that weakens steels therefore understanding and controlling of its diffusion into metal will influence economically on different aspect of industry.

INTRODUCTION

Hydrogen is the smallest element that exists. It can diffuse very easily in metal structures, at temperatures close to ambient. Between the metal and the hydrogen, there may be interactions in the volume (diffusion, trapping) and at the surface (adsorption, absorption).

The interaction mechanisms and the consequences on the mechanical strength of the parts are information necessary for the marketing of steels and the optimization of their behavior to fight against embrittlement. One of the important option is diffusion of hydrogen through metal structure.

This application note aims to find optimize parameters based on electrochemical hydrogen permeation technique.

Mechanism of Hydrogen Absorption

The hydrogen loading of the metal can be done in contact with different types of sources of hydrogen like as: gaseous hydrogen (H2), or a proton (H⁺) from a hydrogenating species (H₂O, H₃O⁺, H₂S,HS, etc.) Basic solution consisted OH⁻.

a) Acid medium

In an acid medium, the dissolution reaction of the metallic species takes place in association with the reduction of the proton.

$$H^+ + e^- \rightarrow H_{ads}$$

INTRODUCTION

There are two recombination mechanisms to reform H_2 in acidic area:

- 1. $H_{ads} + H_{ads} \rightarrow H_2$
- 2. $H_{ads} + H^+ + e \text{ metal} \rightarrow H_2$

Globally it could be considered as the reaction

2 (H^+ $\,$ + e^-) \rightarrow 2 H_{ads} \rightarrow (1- $\epsilon)$ H_2 or 2 ϵ H_{ads}

b) Basic medium

In an adsorbed basic medium:

 $\begin{array}{l} 2 \ H_2O \ +2 \ e^- \rightarrow 2 \ H_{ads} \ + \ 2 \ OH^- \\ H_{ads} \ \rightarrow (1\ \epsilon) \ H_2 \ or \ 2\epsilon \ H \end{array}$

The surface is then covered with H absorption in the metal with respect to an acid medium.

In this text all performances were run in basic solution consisting NaOH 0.1M. Evidently the reaction of Hydrogen permeation will follow as "Basic medium".

Figure 1 shows the schema of two mechanism which could be exist for diffusion of hydrogen: Interstitial and substitutional mechanism [1].

Figure 1: Schematic mechanism of hydrogen diffusion towards metal

Experimental assembly

Figure 2 shows schema of experimental assembly of a reaction in which permeation of hydrogen is supposed to be studied.

Figure 2: Schema of experimental assembly of hydrogen permeation

Basically, you need two potentiostats, and two cells. One of them will act as hydrogen producer (source of hydrogen) which is called "charging cell". By the other cell, the permeation of hydrogen will be detected which is called "detection cell".

For each cell, one reference electrode and one auxiliary electrode is needed. The working electrode is the metal plate that is common between two cells [2,3,4].

Experimental assembly

Note: In standard texts and articles there are recommended to pay attention to below items:

- Purge neutral gas for deoxygenating the solutions
- Paladising the metal surface to block the protons of metal and prevents the formation of oxide layer
- Agitating the cells
- Using graphite as auxiliary electrode and not platinum, to avoid adsorption of hydrogen by platinum [3,4].

In this application note, none of the mentioned above points were used, and a remarkable result was obtained.

Hardware Setup

Two potentiostats were used for this manipulation controlled by OrigaViewer software. The cells and electrodes were connected to potentiostats as figure 3. Configuration of each cell was 3 electrode inverted (found in « Start » box of flow chart.

Figure 3: experimental setup; A) Reference electrodes, B) Work electrode (steel disc), C) Auxiliary electrode

The sample (working electrode) must be clean and has a polished and mirror surface without any corrosion on its surface.

PARAMETERS

The methods are carried out by the OrigaViewer software. Flow charts for each cell are identified in Figures 4 and 5.

Figure 4: Parameters of flow chart related to charging cell

PARAMETERS

							nitialization - Cell	l configuratio	n		
Detection Cell							Electrodes connected with		OGS/OGF/LDS		
						Connection cell on			3 electrodes inverted		
						1	emperature sensor	r	No		
Start Open Circuit Potential						Settings Instruments					
							Delay before dis	Delay before disjunction (m		20	
							Auto ranging de	Auto ranging delay (msec.)		200	
							Bandwidth limit	Bandwidth limit		No	
						🗄 Stopping criteria					
						Uariables initialization					
		· · · ·									
	Chrono						Open Circuit	Potential			
Amperometry Expert End							Duration			5, min.	
							Meas. period	/leas. period (sec.)		0.2	
							Drift threshold (mV/mir Analog Filter		.)	0	
									Auto		
						Polarise at en	d		No		
					Save points				Yes		
				4			Auxiliary inpu	ıt		No	
Detential Stene							~				
i otentiai steps							~				
	Value	Versus	Duration	Unit	Meas. P	eriod					
Level 1	540	REF ~ mV	20	hour ~	1	Sec					
Level 2	200	RÉF V mV	2	min. 🗸	0.1	Chro	no Amperometry	Expert			
Level 3	0	REF V mV	1	min. V	0.1	Moc	e	Norn	nal		
Level 4	0	REF / mV	1	min. V	0.1	Pote	ntial steps	1/54	1/540/REF/20/hour/1/1/200/REF/2.		
	0	REF V mV	1	min. 🗸	0.1	Cycle 1					

Figure 5: Parameters of flow chart related to detection cell

0.1

0.1

 \sim

OK

Ohmic Drop Comp.

Maximum current (mA)

Minimum current (mA) Open circuit at end

Maximum range

Minimum range

Analog Filter

Auxiliary input

No

Auto

Auto

Auto

100

-100

Yes

No

Level 6

Level 7 Level 8 0

0

0

REF mV

REF

REF

All levels : V

m٧

m٧

All levels :

Result & Discussion

For this test, initially only the detection cell was filled with NaOH 0.1M, after 3 hours of imposing the potential of 540 mV on the detection cell (to have a good stabilization), the charging cell was filled with NaOH 0.1M by beginning to impose the current of -15 mA for 5 hours on this cell while continuing to impose potential on the detection cell. The two related curves are overlayed together in figure 6.

In order to have a better detection of hydrogen permeation current, a smoothing of 10 is applied.

Figure 6: Curve results of hydrogen permeation in two cells:

Chrono potentiometry on charging cell Chrono Amperometry on detection cell

Calculation

Time-lag Method

By carrying out permeation tests, a curve will be obtained at the output expressing the current Ip detected as a function of time. From the curve obtained, the diffusion coefficient can be calculated simply with the timelag method:

$$D_{eff} = \frac{e^2}{6t_{lag}}$$

Where:

t-lag: time of permeation which is obtained at 61.7% of $\rm J_{ss}$ of steady-state

J_{ss}: permeation current

e: thickness of the membrane steel disc (cm) [in this test it is 0.02 cm] D_{eff} : diffusion coefficient (cm². s⁻¹)

Table 1 shows gained results from the electrochemical curves through tlag calculation method.

INSTRUMENT AND ELECTRODES

Figure 7: 2 OrigaFlex OGF500

Electione Setup						
Sample	Steel plate by 200 μm of thickness					
Instrument	2 OrigaFlex OGF500					
Software	OrigaViewer					
Auxiliary electrode	Platine disk electrode Ø10 103mm					
Reference electrode	Reference electrode Ag/AgCl 120mm					
Solution	NaOH 0.1M					

Electrode setup

Figure 8: Hydrogen permeation cell assembly

Reference:

- [1] Yokogawa Electric Corporation, Page 9-32, AN-P-20220616-02
- [2] Electrochimica Acta Volume 189, 2016, Pages 111-117
- [3] Corrosion Science, Volume 80, 2014, Pages 517-522

[4] ISO-17081, Method of mesurement permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique, edition: 2014-06-01

OrigaLys ElectroChem SAS